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ABSTRACT

A method has been proposed to estimate the fundamental matrix of a positing and monitoring binocular vision
system with a long working distance and a large field of view. Because of the long working distance and large field
of view, images grabbed by this system are seriously blurred, leading to a lack of local features. The edge points
are acquired using the Canny algorithm firstly, then the pre-matched points are obtained by the GMM-based
points sets registration algorithm, and eventually the fundamental matrix are estimated using the RANSAC
algorithm. In actual application, two cameras are 2km away from the object, the fundamental matrix are figured
out, and the distance between each point and the corresponding epipolar line is less than 0.8 pixel. Repeated
experiments indicate that the average distances between the points and the corresponding epipolar lines are all
within 0.3 pixel and the deviations of the distances are all within 0.3 pixel too. This method takes full advantage
of the edges in the environment and does not need extra control points, whats more, it can work well in low SNR
images.
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1. INTRODUCTION

The fundamental matrix is the basic object that represents the geometric information between two views in the
pinhole camera model.1

Obtaining three dimensional information from images taken from different viewpoints is a vital and challenging
task in computer vision. However, as the measured datas in images are just pixel coordinates, there are only two
ways2 that can be used to perform this task:

The first one is to establish a model which relates image coordinate system to world coordinate system, and
to estimate all the parameters corresponding to such a model. This model can be acquired by camera calibration,
which typically computes the 3× 4 projection matrix P̂. The 11 parameters of this projection matrix account
for both intrinsic and extrinsic camera calibration parameters. However it is not always possible to assume that
cameras can be calibrated accurately, in some cases, it is even impossible to calibrate cameras.

The second approach is to use projection information, which needs no intrinsic parameters of the cameras.
This approach requires only image coordinate system information which relates to the same world coordinate
system from different viewpoints, thus a much more smaller number of parameters have to be estimated.

If we only have to estimate the fundamental matrix and do not care about the exact intrinsic and extrinsic
parameters of the camera, the second method of course has more advantages. It is much easier to accomplish and
needs to estimate less parameters, and there is no need to get information of the world coordinate system. it does
benefit us a lot especially under wild-field condition. It is not easy to get accurate world coordinate information
in the wild field. Besides, it is also a great challenge to correspond one point in world coordinate system to
one in image coordinate system. Both reasons make it difficult to acquire accurate calibration information.
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Moreover, it takes too much time to obtain these information, which should be taken into consideration in
practical applications.

For the second method, we should get sufficient corresponding points in two images. After that, we can
use different kinds of methods to estimate the fundamental matrix. All these methods can be divided into two
categories: the linear algorithm and the nonlinear algorithm. The linear algorithm can estimate fundamental
matrix in linear time, but because it ignores the constraint between parameters and the error criterion lacks
physical meanings, its precision is low. This kind of algorithm typically includes Linear Least-square method,
singular value decomposition, etc. The nonlinear algorithm maintains a higher precision, because it takes the
physical meanings into account. The biggest difference between different iterative algorithms is the choice of
different error criteria,3 such as algebraic distance, symmetric epipolar distance or Sampson distance.

In practical applications, because of the outliers and the error of the detected points, robust algorithms4 are
used to eliminate the outliers and reduce the error, like RANSAC, LMedS, M-estimation and MLESAC.

All these algorithms require us to get enough corresponding points. In wild-field case, we can get the
corresponding points through two methods. The first one is to add extra control points and get them in two
images, which, as is mentioned above, is not practical. The second method is to use the image processing method
to extract feature points. This method is a prevalent access to get enough corresponding points. The state-of-art
algorithms, like Harris corner,5 SIFT,6 ASIFT,7 MSER,8 can do quite well in many cases. But in wild-field case,
the long working distance makes the images quite blurred and we cannot easily extract enough local features
accurately.

Inspired by contour points match algorithm9 and points sets registration algorithm10111213,14 we propose an
algorithm to cope with the problem of fundamental matrix estimation for binocular vision system used in wild
field. Firstly, we acquire the edge points using canny edge detector, and then we get the pre-matched points by
the GMM based point set registration algorithm, at last, we get the fundamental matrix using the RANSAC
algorithm. This method takes full advantage of the edge information in the environment and does not need extra
control points. It can work well in low SNR images as well.

The remainder of this paper is organized as follows, the theory of the GMM based point set registration is
introduced in Section (2.1). Section (2.2) presents the theory of fundamental matrix estimation using RANSAC.
Section (3) describes the experiments and compares our algorithm with ASIFT. Finally, the research is concluded
in Section (4).

2. THEORY OF FUNDAMENTAL MATRIX ESTIMATION

2.1 GMM Based Point Set Registration

First, we obtain the edge of the monitored area using canny edge detector.15 We denote the edge point set
in the left image by XN×3 = (x1, · · · ,xN )T , and denote the edge point set in the right image by YM×3 =
(y1, · · · ,yM )T , where xi, (i = 1 · · ·N) and yi, (i = 1 · · ·M) are homogeneous coordinates of edge points. N and
M indicate the number of the points in each set respectively.

The probability density function of a general Gaussian mixture is defined13 as

p(x|µi,Σi) =

k∑
i=1

ωiϕ(x|µi,Σi) (1)

where

ϕ(x|µi,Σi) =
1

2π
√
|Σi|

exp[−1

2
(x− µi)

TΣ−1
i (x− µi)] (2)

We make three assumptions :

1. The edge point set Y is the GMM centroids and the edge point set X is the point set generated by GMM;

2. The number of Gaussian components is the number of the points in Y, that is M ;
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3. All components of the GMM share a equal membership probability P (m) = 1
M and a equal isotropic

covariances σ2.

Then the GMM probability density function is

p(x) =
M∑

m=1

P (m)p(x|m) (3)

where p(x|m) = 1
2πσ2 e

− ∥x−ym∥
2σ2 . In order to cope with the noise and outliers, we add an additional uniform

distribution14 p(x|M + 1) = 1
N to the gaussian mixture model. Denoting the weight of the uniform distribution

as ω, 0 ≤ ω ≤ 1, the mixture model takes the form

p(x) = ω
1

N
+ (1− ω)

M∑
m=1

1

M
p(x|m) (4)

According to theory of maximum likelihood, we estimate a set of θ by maximizing the likelihood, or by
minimizing the negative log-likelihood function. θ contains all the transportation information between X and
Y.

E(θ, σ2) = −
N∑

n=1

log
M+1∑
m=1

P (m)p(xn|m) (5)

In fact, we cannot directly minimize the Equation (5) by computing its derivative or through other methods.
We choose the EM algorithm to estimate θ and σ2. The EM algorithm contains two steps, the E-Step and the
M-Step.

E-Step Use the Bayes’ theorem to compute a posteriori probability distributions P old(m|xn) of mixture com-
ponents according to Equation (7)

P (m|xn) =
P (m)p(xn|m)

p(x)
(6)

=
exp[ 12∥

xn−T (ym,θ)
σ ∥]∑M

k=1 exp[
1
2∥

xn−T (ym,θ)
σ ∥] + 2πσ2 ω

1−ω
M
N

(7)

M-Step Estimate new parameter values by minimizing the expectation of the function in Equation (8)

Q = −
N∑

n=1

M+1∑
m=1

P old(m|xn)log(P
new(m)pnew(xn|m)) (8)

we can rewrite Equation (8) into Equation (9).

Q(θ, σ2) =
1

2σ2

N∑
n=1

M∑
m=1

P old(m|xn)∥xn − T (ym, θ)∥2 + Nplogσ
2 (9)

where Np =
∑N

n=1

∑M
m=1 P

old(m|xn)

Repeat the E-Step and M-Step until it converges.

We use T (Y, v) = Y + v(Y) to define the transformation14 for the nonrigid point set registration process of
EM optimization .
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2.2 Fundamental Matrix Estimation With RANSAC

Epipolar geometry describes the constraints satisfied by two perspective projections x = (u, v, 1) and x
′
=

(u
′
, v

′
, 1) of the same physical 3D point on two different images from different view points. For pinhole cameras,

the relation can be written in the following form

x
′TFx = 0 (10)

where F , the fundamental matrix, is a 3× 3 matrix with rank 2 that depends on the rigid motion between the
two image planes and the camera parameters. We can interpret the Equation (10) like this: the point x

′
of the

right image plane is on the epipolar line Fm whose line equation au
′
+ bv

′
+ c = 0 is obtained from x = (u, v, 1)

by (a, b, c)T = F (u, v, 1), and vise verse.

With enough(at least eight) corresponding points xi ↔ x
′

i, the Equation (10) can be used to compute the
unknown fundamental matrix F.

(u
′

iui, viu
′

i, u
′

i, uiv
′

i, viv
′

i, v
′

i, ui, vi, 1)f = 0 (11)

where f = (F11, F12, F13, F21, F22, F23, F31, F32, F33)
T

Assume that we have n corresponding points, then we can obtain a system of linear equations with n equations
from the Equation (11)

Af = 0 (12)

where

A =

 u
′

1u1 v1u
′

1 u
′

1 u1v
′

1 v1v
′

1 v
′

1 u1 v1 1
...

...
...

...
...

...
...

...
...

u
′

nun vnu
′

n u
′

n unv
′

n vnv
′

n v
′

n un vn 1


The case n = 8 corresponds to the eight-points algorithm.16 The solution of f = 0 is unacceptable. Moreover,

the rank of F is 2, which has to be imposed afterward because of numerical stability of f computation. A common
way to handle this problem is to compute a SVD of A and get a singular vector associated to the smallest singular
value, this process is equivalent to the least square formulation, and then set the smallest singular value of F to
zero.

In section 2.1, we use the GMM based point set registration algorithm to match the edge point set roughly. So
we cannot use these corresponding points directly. We choose the RANSAC algorithm to eliminate the outliers
and estimate the fundamental matrix.

3. EXPERIMENT

In this section, we present the results obtained under real working condition. Two cameras are both Basler
cameras with lens whose focal lengths are 24mm. The camera model is piA2400-17gc/gm, and the camera has a
resolution of 2448× 2050 and pixel size of 3.45× 3.45µm. In experiment the cameras are both about 2km away
from monitored objects.

First, we normalize17 the coordinates of the edge points obtained by canny edge detector, because the large
range of the coordinates makes the estimation of the fundamental matrix quite sensitive to noise. We implement
this by shifting the center of the image coordinates to the center of the point set and scaling the point set to an
average distance of

√
2. Then we use the GMM based algorithm to accomplish the point set registration. The

result is shown in Fig. (1).

At last, we use RANSAC algorithm to find out inliers and estimate the fundamental matrix. And the matched
points are shown in Fig. (2). In Fig. (3), we show the result of the ASIFT algorithm.7 Our algorithm can find
more correct matches than ASIFT. Although ASIFT find 14 matches, there are several points quite close to each
other, it will make the fundamental matrix estimation unstable. And our algorithm can not only find matches in
artificial objects but also in hill edges, it can be used in other environment where there are no artificial objects.
After getting the fundamental matrix, we can calculate distance between one point and its corresponding epipolar
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Figure 1. Top: The edge point set X and Y obtained by Canny edge detector. Bottom: The edge point set X and the
transformed point set Y. In both figures, the red ”.” indicates the points in the left image and the blue ”.” indicates the
points in the right image.

Figure 2. The proposed algorithm finds 86 correct
matches

Figure 3. The ASIFT algorithm finds 14 correct match-
es

line according to the Eqs. (13) and (14) and evaluate the precision of the fundamental matrix estimation by the
distances. Fig. (4) shows the distances.

d(ui,Fu
′

i) = ∥ uT
i li√

l21 + l22
∥ = ∥ uT

i Fu
′
i√

l21 + l22
∥ (13)

d(u
′

i,F
Tui) = ∥ u

′T

i l
′
i√

l′
2
1 + l′

2
2

∥ = ∥ u
′T

i F
Tui√

l′
2
1 + l′

2
2

∥ (14)

In order to maintain the symmetry, we calculate the distances in two images at the same time. So in every
experiment we get a single average distance through Equation (15).

d̄ =

∑n
i=1[d(xi,Fu

′

i) + d(x
′

i,F
Txi)]

2n
(15)
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Figure 4. Results of a single experiment. Top: The distance between every point in Left Image and correspondent epipolar
line according to Equation (13). Bottom: The distance between every point in Right Image and correspondent epipolar
line according to Equation (14). The X coordinate of both figure means the point number in images.

We can then calculate the standard deviation of the distances according to Bessel formula.

σ =

√∑n
i=1{[d(xi,Fx

′

i)− d̄]2 + [d(x
′
i,F

Txi)− d̄]2}
2n− 1

(16)
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Figure 5. Results of repeated experiments . Top: The average distance between points and correspodent epipolar lines
in every experiment according to Equation (15). Bottom: The deviation of the distance in each experiment according to
the Equation (16). The X coordinate of both figure means the x-th experiment.

We repeat the experiment for 100 times, the average distance and standard deviation of every experiment
are shown in Fig. 5. We can see that the average distances are all below 0.3 pixel and the standard deviations
of the distance in every experiment are less than 0.3 pixel too.
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4. CONCLUSION

We propose a method in this paper to estimate the fundamental matrix of a positing and monitoring binocular
vision system with a long working distance and a large field of view. It is proposed to deal with the imaging blur
introduced by the long working distance and bad weather, like fog, and absence of local features in the environ-
ment. Experiments indicate that our algorithm can work better than ASIFT under these special circumstances.
We can then implement object matching, and self-calibration with the fundamental matrix.
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